高数 简单记录

公式类型 公式
和差化积 sinA+sinB=2sinA+B2cosAB2\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}
sinAsinB=2cosA+B2sinAB2\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}
cosA+cosB=2cosA+B2cosAB2\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}
cosAcosB=2sinA+B2sinAB2\cos A - \cos B = - 2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}
积化和差 sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2} [ \cos(A - B) - \cos(A + B) ]
cosAcosB=12[cos(AB)+cos(A+B)]\cos A \cos B = \frac{1}{2} [ \cos(A - B) + \cos(A + B) ]
sinAcosB=12[sin(A+B)+sin(AB)]\sin A \cos B = \frac{1}{2} [ \sin(A + B) + \sin(A - B) ]
cosAsinB=12[sin(A+B)sin(AB)]\cos A \sin B = \frac{1}{2} [ \sin(A + B) - \sin(A - B) ]

两个重要极限:

limx(1+1x)x=e\lim\limits_{x \to \infty}(1+\frac{1}{x})^x=e

limx0sinxx=1\lim\limits_{x \to 0}\frac{\sin x}{x}=1

limxx0f(x)=0\lim\limits_{x \to x_0}{} f(x)=0f(0)f(0)xx0x \to x_0 时的无穷小量。

常见的等价无穷小量:$x \to 0 $ 时,

ln(1+x)ex1xsinxtanxarctanxarcsinx\ln(1+x) \sim e^x-1 \sim x \sim \sin x \sim \tan x \sim \arctan x \sim \arcsin x

1cosxx221-\cos x \sim \frac{x^2}{2}

1+x1x2\sqrt{1+x}-1 \sim \frac{x}{2}